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Bos and Liang have separately proved that the Kergin interpolants with respect
to distinguished nodes on the unit disk are best approximations of the monomials
in the infinity norm. These results are extended by characterizing the nodes as
solutions of a system of nonlinear equations. Thus, it is possible to get all nodes
with this property on the unit disk and it is likewise possible to lift results to the
ball in the sense of approximation in the mean. � 1998 Academic Press

1. INTRODUCTION

Bos [1] and Liang [5] proved that Kergin interpolants K(xm) to the
(multivariate) monomials xm, m=(m1 , m2) # N2

0 , are best approximations
of the monomials on the unit disk B2 in the infinity norm, provided that
certain equally spaced points on the unit circle S1 are taken as interpola-
tion nodes. For these nodes &xm&K(xm)&�=21&|m|, x # B2.

The question is whether there exist other interpolation nodes for which
the corresponding Kergin interpolants are best approximations of the
monomials on the disk. Furthermore, one can ask how to calculate such
nodes and one can reflect upon lifting the problem of best approximation
on the disk to higher dimensions.

These questions are answered by Theorem 4.1 below which gives a
characterization of the desired nodes.

First, in Section 2 an explicit representation of the Kergin interpolants to
the monomials and their coefficient is given which is important for further
results. In Section 3 the nodal systems which yield best approximating
Kergin interpolants are characterized and in Sections 4 and 5 this charac-
terization is used to extend the result of Bos and Liang to further nodes.

In this particle Pr
+ denotes the linear space of polynomials of degree �+

in r variables and P
* r

+ is defined to be the linear space of homogeneous
polynomials of degree +.
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2. KERGIN INTERPOLANTS TO THE MONOMIALS

In 1978, Kergin [2, 3] proposed an operator C+(Rr) � P r
+ which only

needs ++1 nodes to interpolate a function f # C+(Rr) uniquely, i.e.
interpolation is done at far fewer nodes that is given by the dimension
of Pr

+ .
For the monomials a representation of the Kergin interpolants is known

which, in contrast to the Kergin interpolants to arbitrary functions, can be
evaluated numerically.

Using elementary symmetric polynomials that are defined for t0 , ..., tn

# R by sj (t0 , ..., tn) :=�0�i1< } } } <ij�n ti1
} ti2

} } } tij
, j # [1, ..., n+1] and

s0(t0 , ..., tn) :=1 (see e.g. Kostrikin [4, p. 276]), the Kergin operator for
the monomials has the following representation.

Theorem 2.1. (Kergin [2, 3]). Let r # N, + # N0 , and x0 , ..., x+ # Rr.
Let K be the Kergin operator with respect to the nodes x0 , ..., x+ . Then for
m # Nr

0 , |m|=++1,

K \\++1
m + xm+= :

0<k�m
k # N

r
0
\ |m&k|

m&k + :kxm&k,

where :k is the coefficient of yk= yk1
1 } } } ykr

r in (&1)|k|&1 s |k|( y } x0 , ..., y } x+),
|k| # [1, ..., ++1], and y # Rr. For |k| � [1, ..., ++1] let :k :=0.

For m # Zr, |m|=+, the multinomial coefficient is defined here by

\+
m+=

+ !
m1 ! } m2 ! } } } mr !

and \+
m+ :=0 for m # Zr, m�� 0.

The coefficients :k play an important role in obtaining a characterization
of suitable interpolation nodes. Therefore, an explicit representation of the
:k ��as developed in the author's dissertation [6]��shall be given here.

First, some notation is necessary.

=
For k=(k1 , ..., kr) # Nr

0 with 1�|k|�++1

let the index family Ik be defined by

Ik :=[1, ..., 1,
k4

2, ..., 2
k2

, ..., r, ..., r
kr

]. (1)

{(Ik) denotes the set of index families that

are obtained from Ik by permuting its elements.
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Theorem 2.2. Let + # N0 . For k=(k1 , ..., kr) # Nr
0 , 1�|k|�++1, let Ik

and {(Ik) be defined as in (1). Let K(xm), m # Nr
0 , |m|=++1, be the Kergin

interpolant with respect to the nodes x0 , ..., x+ # Rr and let :k be its
coefficients. Then

:k=(&1) |k|&1 } :

(l1 , ..., l|k| ) # {(Ik)
0�i1< } } } <i|k|�+

xi1 , l1
} xi2 , l2

} } } xi|k| , l|k|
. (2)

(The second indices l1 , ..., l |k| denote the components of the nodes xi1
, ..., xi|k|

.)

3. IDENTIFICATION OF CERTAIN POLYNOMIAL FAMILIES
AS KERGIN REMAINDERS

Reimer in [9, Chap. 9] introduces multivariate polynomials Am # Pr
++1 ,

m # Nr
0 , |m|=++1, which are generated by certain univariate polynomials

Q++1 # P1
++1"P1

+ , where Q++1 is only required to fulfill Q++1(&!)=
(&1)++1 Q++1(!) for ! # R.

Q++1 is a generating function of Am if

|t|++1 Q++1 \tx
|t|+= :

|m|=++1

Am(x) tm (3)

for x, t # Rr. For Q++1(!)=�w(++1)�2x
&=0 a++1&2&!++1&2& it then follows that

Am(x)= :
|n| �w(++1)�2x

a++1&2 |n| \++1&2 |n|
m&2n +\ |n|

n + xm&2n. (4)

Let K(xm) denote the Kergin interpolant to the monomial xm with respect
to the nodes x0 , ..., x+ # Rr. For the equidistant nodes of Liang on S 1 there
is

Am(x)=a++1 \++1
m + (xm&K(xm)), (5)

with a++1=2|m|&1 the leading coefficients of the Tschebyscheff polyno-
mials of the first kind T++1.

According to a result of Reimer [7] the polynomials Am are (for r=2)
the polynomials of least deviation from zero with respect to the maximum
norm, thus yielding that the Kergin interpolants to the equidistant nodes
of Liang are best approximations to the monomials (see [5]).
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The aim now will be to determine interpolation nodes on Sr&1, r�2,
such that relation (5) is valid with respect to the maximum norm or (for
r�3) at least with respect to the L2-norm (see Section 5).

Relation (5) is equivalent to

K(xm)=xm&a&1
++1 \++1

m +
&1

Am(x) (6)

which results in a characterization of the corresponding nodes.

Theorem 3.1. Let m # Nr
0 , |m|=++1. Let the polynomials Am be

generated as in (3). The Kergin interpolant K(xm), with respect to the nodes
x0 , ..., x+ , satisfies relation (6) if and only if the coefficients :k=:k(x0 , ..., x+)
of K(xm), k # Nr

0 , 0{k�m, fulfill the following equations:

:k=0

:k=&\ |n|
n +

a++1&2 |n|

a++1

for k{2n, k�m,

for k=2n, 1�|n|�\++1
2 | .= (7)

Proof. By the use of (4), a comparison of (6) and of the representation
of K(xm) given in Theorem 2.1 yields (7). K

4. RESULTS ON B2

We are now able to state an extension of the result of Bos and Liang.

Theorem 4.1. Let r=2, Q++1=T++1 , + # N0 , and let m # N2
0 , |m|=

++1. If the nodes x0 , ..., x+ # S 1 satisfy the system (7), resulting by inserting
(2), then the corresponding Kergin interpolant K(xm) is a best approximation
to the monomial xm, i.e., &xm&K(xm)&�=21&|m|, x # B2.

Proof. The nodal systems of Liang are solutions of (7) for Q++1=T++1

with the parameters a++1&2 |n| , 0�|n|�w(++1)�2x being the coefficients
of the Tschebyscheff polynomials T++1 . The statement then follows by the
result of Liang [5]. For other nodal systems it follows analogously. K

Example. The solution of (7) for +=2 yields the nodes given in the
following table. Tables for +=1 and +=3 can be found in [6]. In the table
the nodes of Liang are marked by a star.
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Nodes for +=2

Nodal Systems

xm x0 x1 x2

x3
1 (0, 1) \- 3

2
,

1
2+ \&

- 3
2

,
1
2+

(0, &1) \- 3
2

,
1
2+ \&

- 3
2

,
1
2+ V

(0, 1) \- 3
2

, &
1
2+ \&

- 3
2

,
1
2+

(0, &1) \- 3
2

, &
1
2+ \&

- 3
2

,
1
2+

(0, 1) \- 3
2

, &
1
2+ \&

- 3
2

, &
1
2+ V

(0, &1) \- 3
2

, &
1
2+ \&

- 3
2

, &
1
2+

(0, 1) \- 3
2

,
1
2+ \&

- 3
2

, &
1
2+

(0, &1) \- 3
2

,
1
2+ \&

- 3
2

, &
1
2+

x3
2 Nodes for x3

1 with interchanged components

x2
1 x2 (1, 0) \&

1
2

,
- 3

2 + \&
1
2

, &
- 3

2 + V

(&1, 0) \1
2

,
- 3

2 + \1
2

, &
- 3

2 + V

x1 x2
2 nodes for x2

1x2 with interchanged components

It turns out that the only equally spaced nodes are those of Liang. In
particular, there exist solutions of (7) that are not equidistributed.

5. RESULTS ON Br, r�3

According to Reimer [8], it is impossible in the case r�3 to generate
polynomials of least deviation from zero with respect to the maximum
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norm by rational functions. Therefore, the results of case r=2 cannot be
lifted completely to higher dimensions. Nevertheless, it is possible to obtain
similar results with respect to & }&2 .

Let p, q be arbitrary polynomials. Define the semi-inner product

(p, q) :=|
Sr&1

p(x) q(x) dx.

Now the problem of best approximation can be investigated with respect
to the seminorm &p&2 :=- (p, p).

Let Am # Pr
++1, m # Nr

0 , |m|=++1, be generated as in (3). Homogeniza-
tion of the polynomials Am leads to A*

m(x) :=|x| ++1 Am(x�|x| ), x # Rr, with
A*

m(x)=Am(x) for x # Sr&1.
Let the coefficient functionals cm : Pr

++1 � R, m # Nr
0 , be defined by

P(x)=� |m|�++1 cm(P) xm for P # Pr
++1 (Reimer [9, p. 32]) and let c*m

denote the restriction of the coefficient onto P
* r

++1 with the representer A*
m ,

i.e., c*m(P)=(P, A*
m) for arbitrary P # P

* r
++1 . Then the following theorem is

valid for A*
m .

Theorem 5.1. (Reimer [9, Theorem 9.4]). Let r�2, m # Nr
0 , |m|=++1,

+ # N0 . Then |c*m(P)|�c*m(A*
m) holds for arbitrary P # P

* r
++1 with &P&2�

&A*
m&2 . Conversely, P # P

* r
++1 and |c*m(P)|=c*m(A*

m) implies &P&2�&A*
m&2 .

Equality occurs if and only if P=\A*
m .

In the following lemma the notation n#m means that nj=mj mod(2) for
j=1, 2, ..., r and the a |n| denote the coefficients of Q++1 .

Lemma 5.2 (Reimer [9, p. 76]). Let r�3, m # Nr
0 , |m|=++1. Then

&A*
m&2

2= :

n#m
n�m \

|n|
n + \

|m&n|
2

m&n
2 +

2

a |n| .

From this a result similar to Theorem 4.1 can be derived.

Theorem 5.3. Let r # N, r�3, and m # Nr
0 , |m|=++1, + # N0 . If the

nodes x0 , ..., x+ # Sr&1 satisfy the nonlinear system (7), resulting from
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inserting (2), then the corresponding Kergin interpolant K(xm) is a best
approximation of the monomial xm on S r&1 with respect to & }&2 and

&xm&K(xm)&2

=a&1
++1 \++1

m +
&1

} \ :

n#m
n�m \

|n|
n + \

|m&n|
2

m&n
2 +

2

a |n| +
1�2

, x # Sr&1.

Proof. Am(x)=a++1(
++1

m )(xm&K(xm)) if the interpolation nodes fulfill
(7). Let P # P

* r
++1 be arbitrary with |c*m(P)|=c*m(A*

m)=a++1( ++1
m ). Now

application of Theorem 5.1 gives

&P&2�&A*
m&2=|a++1 | \++1

m + &xm&K(xm)&2 , x # Sr&1.

Lemma 5.2 concludes the proof. K

Remark. Numerical experiments in case r=3 show that there exist solutions
of (7) corresponding with the situation of Theorem 5.3. For instance, in the
case of +=3, the vertices of certain tetrahedra circumscribed by the unit
sphere S2 are solutions. In this case (r=3, +=3) it turns out that

Q4(!)=
315

8
!4&

105
4

!2+
15
8

is the unique possible choice for the generating function in (3). Apart from
a constant factor this is just the reproducing kernel of P*3

4 .

Tables of nodes for all multiindices m # N3
0 , |m|=4, can be found in [6].
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